A pilot project in 2010, conducted at CBI, showed the capacity for pulp, micro fibrilars from the forest industry to act as Viscosity Modifying Agent (VMA) in concrete. This project was, however, too limited to find answers for optimal use of this kind of material.
The forest industry company Stora Enso wants to find out if their pulp can be used in concrete in order to somehow improve its properties. Two micro fibrilar suspensions have been tested. The tested fibrils are in two sizes, the finer material named MFC1 has undergone more homogenization than the course material named MFC2.
The fibrils have been evaluated in regard to how the fibrils react with mortars in both its fresh and hardened state. Tests have been conducted on the use of concrete equivalent mortars with a maximum aggregates size of 4 mm. Two water-cement-ratios have been used in the tests, 0.45 and 0.60. Three different fibril dosages have been tested, 1, 2 and 3 kg/m³.
The results of these trials of cellulose fibrils has been evaluated in respect of rheology, compressive strength, flexural strength, cracking, shrinkage, water capillary porosity, anti-wash out resistance (underwater concrete) and as a possible surface coverage.
The results from the trials, conducted in this report, show that an increased dosage of fibrils leads to an increased plastic viscosity. The fibrils appear to have no effect on the flexural- and compressive strength, and no effect on the shrinkage of the test specimens. According to our results it is not advisable to use the fibrils for the purpose of acting as an agent for anti-washout resistance, or as a surface coverage.
The work have been performed at Swedish Cement and Concrete Research Institute, CBI, in Stockholm in the spring of 2011. CBI is an institution whose mission is to create, apply and disseminate knowledge in the concrete and rock area.
Source: KTH
Author: Nilsson, Jonas | Sargenius, Peter
>> Free Project Reports PDF for Civil Students on Building Technology